Abstract
Electroreduction of triphenylphosphine oxide to triphenylphosphine
in an acetonitrile solution of tetrabutylammonium bromide in the
presence of chlorotrimethylsilane was performed successfully in
an undivided cell fitted with a zinc anode and a platinum cathode
under constant current. A plausible mechanism involving, (1) one-electron
reduction of triphenylphosphine oxide generating the corresponding
anion radical [Ph3 P˙
-O- ],
(2) subsequent reaction with chlorotrimethylsilane affording the
(trimethylsiloxy)triphenylphosphorus radical [Ph3 P˙
-OSiMe3 ],
and (3) further one-electron reduction followed by P-O
bond fission leading to triphenylphosphine is proposed. In a similar
manner, electroreduction of some triarylphosphine oxides and alkyldiarylphosphine
oxides was executed to give the corresponding phosphine derivatives in
good to moderate yields.
Key words
reduction - electron transfer - phosphorus - silicon
References
<A NAME="RF78211SS-1A">1a </A>
Maercker A. In Organic
Reactions
Vol. 14:
John Wiley & Sons;
New
York:
1965.
Chap. 3.
<A NAME="RF78211SS-1B">1b </A>
Boutagy J.
Thomas R.
Chem. Rev.
1974,
74:
87
<A NAME="RF78211SS-2A">2a </A>
Hughes DL. In Organic
React ions
Vol. 42:
John Wiley & Sons;
New
York:
1992.
Chap. 2.
<A NAME="RF78211SS-2B">2b </A>
Mitsunobu O.
Yamada M.
Bull. Chem. Soc. Jpn.
1967,
40:
2380
<A NAME="RF78211SS-2C">2c </A>
Mukaiyama T.
Matsueda R.
Maruyama H.
Bull. Chem.
Soc. Jpn.
1970,
43:
1271
<A NAME="RF78211SS-3A">3a </A>
Mukaiyama T.
Araki M.
Takei H.
J. Am. Chem. Soc.
1973,
95:
4763
<A NAME="RF78211SS-3B">3b </A>
Corey EJ.
Nicolaou KC.
J.
Am. Chem. Soc.
1974,
96:
5614
<A NAME="RF78211SS-3C">3c </A>
Corey EJ.
Nicolaou KC.
Melvin LS.
J. Am. Chem. Soc.
1975,
97:
653
<A NAME="RF78211SS-3D">3d </A> Modification:
Gerlach H.
Thalmann A.
Helv. Chim. Acta
1974,
57:
2661
<A NAME="RF78211SS-4A">4a </A>
Appel R.
Angew. Chem., Int. Ed. Engl.
1975,
14:
801
<A NAME="RF78211SS-4B">4b </A>
Calzada JG.
Hooz J.
Org. Synth.
1974,
54:
63
<A NAME="RF78211SS-5A">5a </A>
Staudinger H.
Meyer J.
Helv.
Chim. Acta
1919,
2:
635
<A NAME="RF78211SS-5B">5b </A>
Gololobov YG.
Zhmurova IN.
Kasukhin LF.
Tetrahedron
1981,
37:
437
<A NAME="RF78211SS-5C">5c </A>
Scriven EFV.
Turnbull K.
Chem.
Rev.
1988,
88:
297
<A NAME="RF78211SS-5D">5d </A>
Gololobov YG.
Kasukhin LF.
Tetrahedron
1992,
48:
1353
<A NAME="RF78211SS-5E">5e </A>
Shah S.
Protasiewicz JD.
Coord. Chem.
Rev.
2000,
210:
181
<A NAME="RF78211SS-6">6 </A> Phosphorus is obtained economically
from limited regions of the world:
Kuroda A.
Takiguchi N.
Kato J.
Ohtake H.
J. Environ. Biotech.
2005,
4:
87
<A NAME="RF78211SS-7">7 </A> As an another approach, catalytic
Wittig reaction using 3-methyl-1-phenylphospholane 1-oxide
was reported:
O’Brien CJ.
Tellez JL.
Nixon ZS.
Kang LJ.
Carter AL.
Kunkel SR.
Przeworski KC.
Chass GA.
Angew. Chem. Int. Ed.
2009,
48:
6836
<A NAME="RF78211SS-8A">8a </A>
Fritzsche H.
Chem. Ber.
1965,
98:
171
<A NAME="RF78211SS-8B">8b </A>
Coumbe T.
Lawrence NJ.
Muhammad F.
Tetrahedron
Lett.
1994,
35:
625
<A NAME="RF78211SS-8C">8c </A>
Marsi FM.
J. Org. Chem.
1974,
39:
265
<A NAME="RF78211SS-9A">9a </A>
Horner L.
Hoffmann H.
Beck P.
Chem. Ber.
1958,
91:
1583
<A NAME="RF78211SS-9B">9b </A>
Imamoto T.
Tanaka T.
Kusumoto T.
Chem. Lett.
1985,
14:
1491
<A NAME="RF78211SS-9C">9c </A>
Griffin S.
Heath L.
Wyatt P.
Tetrahedron
Lett.
1998,
39:
4405
<A NAME="RF78211SS-9D">9d </A>
Nelson GE. inventors; US 4,507,502.
; Chem. Abstr.
1985 , 103 , 37617
<A NAME="RF78211SS-9E">9e </A>
Busacca CA.
Raju R.
Grinberg N.
Haddad N.
James-Jones P.
Lee H.
Lorenz JC.
Saha A.
Senanayake CH.
J. Org. Chem.
2008,
73:
1524
<A NAME="RF78211SS-9F">9f </A>
Malpass DB, and
Yeargin GS. inventors; US 4,113,783.
; Chem. Abstr. 1979 , 90 , 23256
<A NAME="RF78211SS-10">10 </A>
Handa Y.
Inanaga J.
Yamaguchi M.
J.
Chem. Soc., Chem. Commun.
1989,
298
<A NAME="RF78211SS-11">11 </A>
Mathey F.
Maillet R.
Tetrahedron Lett.
1980,
21:
2525
<A NAME="RF78211SS-12">12 </A>
Dockner T.
Angew.
Chem.
1988,
100:
699
<A NAME="RF78211SS-13">13 </A>
Timokhin BV.
Kazantseva MV.
Blazhev DG.
Rokhin AV.
Russ.
J. Gen. Chem.
2000,
70:
1310 ; Chem. Abstr. 2001 , 134 , 311265
<A NAME="RF78211SS-14A">14a </A>
Iorga B.
Camichael D.
Savignac P.
C. R. Acad. Sci., Ser. IIC
2000,
3:
821
<A NAME="RF78211SS-14B">14b </A>
Hermeling D,
Hugo R,
Lechtken P,
Rotermund GW, and
Siegel H. inventors; DE 19,532,310.
; Chem. Abstr.
1997 , 126 , 199670
<A NAME="RF78211SS-14C">14c </A>
Masaki M.
Fukui K.
Chem. Lett.
1977,
6:
151
Triphenylphosphorus dichloride
(3a) is also prepared by treatment of 2 with chlorinating reagents such as diphosgene,
triphosgene, and phosphorus pentachloride.
<A NAME="RF78211SS-15A">15a </A>
Rao VJ, and
Reddy AM. inventors; IN 1996-DE1812.
; Chem. Abstr. 2007 , 146 , 402090
<A NAME="RF78211SS-15B">15b </A>
Li H,
Chen Z,
Wu L,
Wang C, and
Hu B. inventors; CN 1,660,862.
; Chem. Abstr. 2006 , 144 , 488805
<A NAME="RF78211SS-15C">15c </A>
Horner L.
Hoffmann H.
Beck P.
Chem. Ber.
1958,
91:
1583
<A NAME="RF78211SS-16">16 </A> Theoretical calculation:
Mo O.
Eckert-Maksic YM.
Maksic ZB.
Alkorta I.
Elguero J.
J. Phys. Chem. A.
2005,
109:
4359
<A NAME="RF78211SS-17">17 </A>
Masaki M, and
Kaketani N. inventors; JP 53-034,725.
; Chem. Abstr. 1978 , 89 , 109953
<A NAME="RF78211SS-18">18 </A>
Fukui K,
Kaketani N,
Kita J, and
Fujimura S. inventors; JP 55-149,293.
; Chem. Abstr. 1981 , 94 , 175259
<A NAME="RF78211SS-19">19 </A>
Horner L.
Beck P.
Hoffmann H.
Chem.
Ber.
1959,
92:
2088
<A NAME="RF78211SS-20">20 </A>
Hermeling D,
Siegel H,
Hugo R, and
Rotermund GW. inventors; EP 725,073.
; Chem. Abstr.
1996 , 125 , 195993
<A NAME="RF78211SS-21">21 </A>
Wettling T. inventors; EP 5,48,682.
; Chem. Abstr. 1993 , 119 , 139547
<A NAME="RF78211SS-22">22 </A>
Young DA, and
Brannock KC. inventors; US 3,780,111.
; Chem. Abstr.
1974 , 80 , 60039
<A NAME="RF78211SS-23A">23a </A>
Organic Electrochemistry
4th
ed.:
Lund H.
Hammerich O.
Marcel Dekker;
New York:
1991.
<A NAME="RF78211SS-23B">23b </A>
Torii S.
In Electroorganic Reduction Synthesis
Kodansha & Wiley-VCH;
Tokyo/Weinheim:
2006.
<A NAME="RF78211SS-23C">23c </A>
New Developments
in Organic Electrosynthesis
Fuchigami T.
CMC;
Tokyo:
2004.
<A NAME="RF78211SS-23D">23d </A>
Electroorganic
Chemistry, Kagaku Zokan
Vol. 86:
Osa T.
Shono T.
Honda K.
Kagaku Dojin;
Kyoto:
1980.
<A NAME="RF78211SS-24A">24a </A>
Santhanam KSV.
Bard AJ.
J. Am. Chem. Soc.
1968,
90:
1118
<A NAME="RF78211SS-24B">24b </A>
Raju T,
Kulangiappar K,
Kulandainathan MA,
Muthukumaran A, and
Krishnan V. inventors; IN 2002-DE793.
; Chem. Abstr.
2007 , 147 , 235305
<A NAME="RF78211SS-25">25 </A>
CRC
Handbook of Chemistry & Physics
74th ed.:
Lide DR.
CRC Press;
London:
1993.
<A NAME="RF78211SS-26">26 </A>
Since 3a is
highly moisture sensitive, 3a was used
without purification.
<A NAME="RF78211SS-27">27 </A>
Yano T.
Hoshino M.
Kuroboshi M.
Tanaka H.
Synlett
2010,
801
<A NAME="RF78211SS-28">28 </A>
Yano T.
Kuroboshi M.
Tanaka H.
Tetrahedron
Lett.
2010,
51:
698
<A NAME="RF78211SS-29">29 </A>
Kuroboshi M.
Yano T.
Kamenoue S.
Kawakubo H.
Tanaka H.
Tetrahedron
2011,
67:
5825
<A NAME="RF78211SS-30">30 </A>
Tanaka H.
Yano T.
Kobayashi K.
Kamenoue S.
Kuroboshi M.
Kawakubo H.
Synlett
2011,
582
<A NAME="RF78211SS-31">31 </A>
Among thus far examined solvents,
MeCN was the only solvent effective for the present purpose; thus,
electro-reduction of 2a to 1a hardly
occurred in THF, DMSO, DMF, and 1,4-dioxane. The electroreduction
proceeded in a mixture of THF and MeCN (4:1 to 1:4).
<A NAME="RF78211SS-32">32 </A>
As a supporting electrolyte, Bu4 NOTf,
Bu4 NBF4 , and Bu4 NClO4 could
be used to give 1a in slightly lower yields (42,
38, and 52%, respectively). The electroreduction of 2a proceeded without supporting electrolyte
to give 1a in 41% yield.
<A NAME="RF78211SS-33">33 </A>
One singlet signal appeared at δ = 32.5
ppm in the ³¹ P NMR of a mixture of 2a , Me3 SiCl, and Bu4 NBr.
On the other hand, a mixture of 2a and
Me3 SiBr showed a singlet peak at δ = 48.7
ppm. These results suggest that Me3 SiCl would react partially
with Bu4 NBr to give Me3 SiBr, which would inter-act
with 1a to form a trace amount of [Ph3 P+ -O-SiMe3 ]Br- . However,
since the electroreduction of Ph3 P=O (2a ) proceeded without Br- source
(ref. 32), the electroreduction of 2a seems
to proceed mainly through the ECEC mechanism (Scheme
[6 ]
).